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A B S T R A C T   

The tactile peripheral nervous system innervating human hands, which is essential for sensitive haptic explo
ration and dexterous object manipulation, features overlapped receptive fields in the skin, arborization of pe
ripheral neurons and many-to-many synaptic connections. Inspired by the structural features of the natural 
system, we report a supersensitive artificial slowly adapting tactile afferent nervous system based on the 
triboelectric nanogenerator technology. Using tribotronic transistors in the design of mechanoreceptors, the 
artificial afferent nervous system exhibits the typical adapting behaviours of the biological counterpart in 
response to mechanical stimulations. The artificial afferent nervous system is self-powered in the transduction 
and event-driven in the operation. Moreover, it has inherent proficiency of neuromorphic signal processing, 
delivering a minimum resolvable dimension two times smaller than the inter-receptor distance which is the lower 
limit of the dimension that existing electronic skins can resolve. These results open up a route to scalable 
neuromorphic skins aiming at the level of human’s exceptional perception for neurorobotic and neuroprosthetic 
applications.   

1. Introduction 

A tactile afferent nervous system is essential to achieving the human 
capability in haptic exploration, tender touching, proprioception and 
dexterous object manipulation. Therefore, electronic skins (e-skins) 
innervated with an artificial afferent nervous system are indispensable 
for emerging anthropomorphic neurorobotics and neuroprosthetics 
[1–3]. A tactile signal provides direct mechanical information about the 
interaction between skin (in particular fingertips) and object. This 
directness facilitates rapid planning and sensorimotor control during 
object manipulation, in contrast to, e.g. visual afferents that produce 
indirect information about such an interaction [4–7]. The extraordinary 
tactile perception and the rapid sensorimotor reactions are largely 
ascribed to the distributed, parallel and event-driven computation based 
on spatiotemporal spike train (action potentials) in a biological nervous 
system. This distributed parallelism is much more efficient in signal 
processing for solving complex real-world problems than sequential and 
centralized operations defined by the classical von Neumann computer 
architecture [8]. 

Most previous efforts in the e-skin development focus on distal 

individual sensors and sensor arrays [9–15]. Few experimental attempts 
encompass artificial tactile nerves [16,17]. Pioneering studies in 
mimicking the function of an afferent-innervated skin mostly use 
two-dimensional (2D) tactile sensor arrays interfaced with complicated 
readout circuits. Individual tactile sensors are then sampled sequentially 
and periodically to map the force distribution [18]. With this approach, 
the readout latency and power consumption increase with the number of 
tactile sensors. It renders the artificial skin difficult to be scaled up for 
real neurorobotic and neuroprosthetic applications. The serial readout 
scheme prevents artificial skin from responding properly to highly dy
namic stimuli. Such dynamic stimulations occur when fingertips with 
fingerprints on the surface touch and slide on an object. The proper 
response to dynamic stimulations is important for human to perceive 
and extract physical properties like roughness and hardness of the ob
ject. The spatial resolution of force mapping reconstructed from data 
readout is usually limited by the inter-sensor distance in the sensor 
array. It is worth noting that the human fingertip can discriminate 
spatial tactile details down to the nanometre scale [19]. As a compari
son, the mechanoreceptors in the fingertip are typically tens of micro
metres in size and the inter-mechanoreceptor distance is at tens to 
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hundreds of micrometres. The superior perception capability of the 
human fingertip is probably associated with the presence of four 
different mechanoreceptors and the role of overlapping of 
receptive-fields, and the parallel computing of data from a huge number 
of tactile receptors in the tactile nervous system which is the key to the 
fast sensoric response. The four mechanoreceptors are slowly adapting 
type I (SA-I), fast adapting type I (FA-I), slowly adapting type II (SA-II), 
fast adapting type II (FA-II) [20]. A receptive field comprises a certain 
number of the same type mechanoreceptors belonging to one tactile 
afferent nerve. The SA-I afferents that are equipped with the Merkel 
nerve endings fire spikes in response to stimuli with two distinct fea
tures. One feature is a continuous firing during stimulations. Another 
feature, which is more important, is the so-called the slowly adapting 
behaviour with a relatively high spike rate in the ramp phase at the 
beginning of a physical contact followed by a continuous decrease in 
rate overtime during the static phase [20]. Force-sensitive polymer films 
are commonly used for artificial tactile sensor arrays [16–18] typically 
to emulate the SA-I afferent. However, only the trait of a constant 
electric response during stimulations has been replicated thus far. The 
adapting feature of the SA-I afferents that is particularly beneficial to 
power saving in tactile perception is yet to realize. Moreover, the use of 
such a resistive sensor array is power inefficient as power supply is al
ways needed for the sensors to respond to external stimuli and the 
resistive sensors dissipate non-negligible amounts of power even at their 
inactive state. 

The superior perception capability of human hand is further associ
ated with the unique signal processing mechanisms in biological tactile 
nervous systems. It has generally been attributed to neural activities in 
the cerebral cortex for a high-level extraction of geometric features of 
stimuli [21]. However, the latest studies on a limited number of bio
logical somatosensory peripheral nerves suggest that the computation 
for extraction of geometric features starts at the level of the branched 
first-order tactile neurons in the tactile processing pathway [22,23]. 

How the tactile peripheral nervous systems (TPNSs) process and use 
tactile information remains to be confirmed. From the electronic engi
neering perspective, hardware deployment of artificial systems that 
emulate the biological TPNSs is significantly lagging behind the corre
sponding theoretical studies based on physiological experimental 
results. 

Here, we report a hardware-based biomimetic artificial SA-I TPNS 
that is characterized by super-high response sensitivity and facilitates 
energy-efficient neuromorphic computation. The artificial SA-I TPNS is 
implemented simply by employing the well-established sensing method 
and circuit design. The design takes advantage of the structural features 
of the biological TPNS counterpart, i.e. the overlapped receptive fields in 
the skin, the arborization of the peripheral neurons and many-to-many 
synaptic connections between the peripheral neurons and the cuneate 
neurons (Fig. 1). A transducer based on triboelectric effects, i.e. tribo
electric nanogenerator (TENG) [24–30], is connected to the gate elec
trode of a transistor. This implementation completes a circuit in 
analogue to a SA-I mechanoreceptor, i.e. the Merkel cell-neurite com
plex distributed superficially in the skin (Fig. 1A). This circuit is thus 
referred to as tribotronic mechanoreceptor (TMR) hereafter. A down
stream ring oscillator in combination with a transistor is employed to 
approximate the function of the peripheral neuron for spike initiation 
(Fig. 1B). A simple inverting amplifier circuit is harnessed to emulate the 
synaptic structure containing multiple synapses, i.e. heterosynaptic 
structure (Fig. 1C). The TMR is supersensitive owning to its unique 
capability of responding to approaching objects prior to physical con
tact. It is self-powered during mechano-electric transduction through 
converting mechanical energy into electric signals. It further exhibits the 
slowly adapting feature of the SA-I mechanoreceptor, which is signifi
cantly beneficial to power efficiency. Hence, our artificial SA-I afferent 
nervous system represents an event-driven system and, mathematically, 
a typical convolutional neural network (CNN). In what follows in the 
remainder of this report, it is shown capable of delivering high-fidelity 

Fig. 1. Schematic illustration of a bioinspired artificial SA-I tactile afferent nervous system. A, A TMR as a SA-I mechanoreceptor. All the mechanoreceptors con
nected to one artificial peripheral neuron define a receptive field. B, A ring oscillator in combination with a transistor as an artificial peripheral neuron for spike 
generation. C, An inverting amplifier circuit as a synaptic structure containing multiple synapses of an artificial cuneate neuron. 
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map of force distribution with a minimum resolvable dimension 2 times 
smaller than that of the aforementioned state-of-the-art electronic skins, 
i.e., the minimum inter-receptor distance. 

2. Experimental section 

2.1. Fabrication of arrayed tribotronic mechanoreceptors 

An array of holes in a layer of tape was prepared using cutter plotter 
(Graphtec, Craft ROBO ProS). The diameter of the holes and the distance 
between the centres of the nearest neighbouring holes were 2.5 mm and 
5 mm, respectively. The tape was then pasted on a substrate (glass or 
Acrylic) as a mask for the preparation of hydrogel droplet arrays. A 
bundle of metallic wires was covered by the mask. Each wire was allo
cated to a hole and insulated from one another. 

Polyacrylamide (PAAm) hydrogel containing lithium chloride (LiCl) 
was employed as the ionic conductive PAAm-LiCl hydrogel. The LiCl, 
acrylamide, ammonium persulfate, N,N′-methylenebisacrylamide, N,N, 
N′,N′-tetramethylethylenediamine and Sylgard™ 184 silicone elastomer 
were used as received from Sigma-Aldrich. The PAAm-LiCl hydrogel 
solution was prepared by dissolving acrylamide powder (14 wt% rela
tive to deionized water) into a 8 M LiCl aqueous solution. Subsequently, 
ammonium persulfate (0.17 wt%), N,N′-methylenebisacrylamide 
(0.06 wt%) and N,N,N′,N′-tetramethylethylenediamine (0.25 wt%), 
with respect to the weight of acrylamide, were consecutively dissolved 
in the solution. Then, the solution was transferred by pipette into the 
prepared hole array of the tape mask on the substrate and incubated in 
an oven at 50 ◦C for 1 h to form the PAAm-LiCl hydrogel droplets. The 
height of the hydrogel droplets was controlled by the solution volume. In 
each hole, the hydrogel drop was electrically connected to an embedded 
wire. 

For the preparation of a polydimethylsiloxane (PDMS) film, the base 

and curing agent of Sylgard™ 184 silicone elastomer were mixed in a 
10:1 wt ratio. After degassing in a vacuum oven at room temperature, 
the elastomer mixture was evenly coated on the surface of the hydrogel 
droplet array and then cured at 80 ◦C for 10 h to form a uniform PDMS 
film of thickness about 2 mm (Fig. S1). The PDMS film would later serve 
as the friction layer for triboelectrification, while the Al plates used for 
contact were made of Al foils attached to acrylic substrates in different 
sizes. The Al rod was prepared by wrapping a stain steel rod with an Al 
foil. 

2.2. Preparation of electronic circuit 

A printed circuit board (PCB) was designed to construct the two-tier 
tactile nervous system (Supplementary Fig. S2). All electronic parts were 
purchased from Farnell. The PCB board was divided into two parts. The 
first part imitated the first-order neurons, including the tribotronic 
transistors to imitate the function of the SA-I mechanoreceptors and the 
ring oscillators to imitate the nerve fibres, which were gated by the 
triboelectric potential and powered by VDD. The second part with 
inverting amplifier arrays imitated the synaptic structures of the second- 
order neurons. It integrated action potentials from the connected first- 
order neurons and powered by VS+ and VS-. The two parts were con
nected via DuPont lines to construct the patterns of divergence and 
convergence of the first-order neurons onto the second-order neurons. 

2.3. Characterization of our artificial SA-I tactile neuron 

A piece of aluminium foil attached to an acrylic plate was used as the 
mobile object (denoted Al plate) in the whole measurement process 
unless otherwise specified. A programmable linear motor (Zaber Tech
nologies T-LSR300B) was used to precisely control the movement 
(relative displacement, speed and acceleration) of the mobile Al plate. 

Fig. 2. Characteristics of the signal processing pathway in a one-branch artificial SA-I tactile afferent in response to mechanical stimuli. A, Variation of triboelectric 
potential and receptor potential with object-skin distance, d. The d < 0 region represents the skin deformation phase resulting from the physical object-skin contact at 
different degrees. B, Variation of magnitude (left axis) and frequency (right axis) of the action potential (i.e. the output voltage of the ring oscillator) with d. C, 
Variation of magnitude and frequency of the postsynaptic potential with d. D, Temporal development of postsynaptic spike trains at different d. Dark blue regions 
indicate the time intervals during which the object is in sojourn with the skin at the given d. E, Time evolution of magnitude and frequency of the postsynaptic 
potential during the static contact phase at d = − 0.250 mm. F, Variation of magnitude and frequency of the postsynaptic potential with the motion speed of the 
object towards the skin. All experimental results in A to C were obtained from fresh contact events by moving the object from afar towards the artificial skin to a 
specific distance at a speed of 2 mm/s. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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The Al plate was mounted on the mobile terminal of the linear motor, 
while the mechanoreceptor array was fastened on the fixed terminal. A 
power supply was connected to the circuit to maintain VDD = 5 V, VS+
= +10 V and VS− = − 10 V. All of the measurements were performed in 
an ambient environment at room temperature. 

To investigate the distance-dependent output of the one-branch 
artificial afferent, the Al plate was driven to approach to the PDMS 
film. It was stopped at a predetermined distance from the surface of the 
PDMS film and stayed still for 10 s to record the electrical output signals. 
Then, it was brought back to its original position to complete a test cycle. 
The triboelectric and receptor potentials were measured using a high- 
precision Semiconductor Parameter Analyzer (Agilent Technologies, 
B1500A). The action potential and postsynaptic potential were recorded 
using an oscilloscope (Siglent, SDS 1102CML). For the slowly-adapting- 
behaviour characterization, the postsynaptic potential was recorded 
every 10 s for a total period of 190 s during which the Al plate and the 
PDMS film were in physical contact. For the dynamic characterization, 
the Al plate was made to move at different speed from 0.25 to 2 mm/s 
towards the PDMS film to investigate the influence of speed on the 
postsynaptic signal. For characterizing the synaptic circuit, the Al foil 
was attached to the surface of a PDMS hemisphere that was in turn fixed 
on the linear motor and driven to become in contact with the PDMS film. 
Around the contact point, three mechanoreceptors differently distanced 
from the Al plate were chosen to record their respective postsynaptic 
potential. The integrated postsynaptic potential was registered at the 
same time using a four-channel oscilloscope (RIGOL, DS4054). In the 
characterization of the two-tier neuron network, the 16 second-order 
neurons were divided into four groups and the same movement of the 
Al plate was repeated four times to enable recording of all the post
synaptic potentials using the four-channel oscilloscope (RIGOL, 
DS4054). 

3. Results and discussion 

The TMR comprises primarily a conductive hydrogel droplet con
nected to the gate terminal of an n-channel enhancement type field- 
effect transistor shown in Fig. 1A. The conductive hydrogel droplets 
containing Li+ and Cl− ions are embedded in soft polydimethylsiloxane 
(PDMS) film, hereby referred to as an artificial skin. An object composed 
of ordinary materials tends to be positively charged when getting a 
physical contact with a PDMS film as a result of triboelectric effect [31]. 
When the object approaches the artificial skin, a displacement current 
arising due to the change of the polarization associated with the elec
trostatic surface charge is generated. This current leads to a positive 
triboelectric potential on the transistor’s gate terminal (Fig. S5) [32]. 
Consequently, the transistor is turned on and a receptor potential is 
generated at its source terminal (Fig. 1A). The receptor potential is 
retained during the object-skin interaction. Aluminium (Al), glass, 
Kapton and paper were used as representative objects of distinct mate
rials for generating the mechanical stimulations for experiment. Results 
with an Al plate as the object are presented throughout this report. 

To understand how our artificial SA-I TPNS processes tactile infor
mation in the signal pathway, a one-branch artificial SA-I TPNS is first 
characterized. This system comprises one TMR, one artificial peripheral 
neuron and one synaptic structure, all of which are sequentially inter
connected (Fig. 2). The triboelectric potential and the receptor potential 
in the TMR already start to change when the approaching Al plate is at a 
distance (d) around 2.2 mm away from the artificial skin as shown in 
Fig. 2A. The spatial position where the plate starts to get in physical 
contact with yet causes no deformation to the artificial skin is defined as 
d = 0. Thus, any position with d ≥ 0 belongs to the approaching phase. 
The magnitude of both potentials is seen to increase monotonically with 
decreasing d. This early warning capability is unique and superior to the 
force-sensitive polymers as artificial skin that relies on the transduction 
mechanism of skin deformation. How the triboelectric potential is 
correlated to d can be well understood by referring to the first-principles 

theory of the extended Maxwell equations [32]; our theoretical analysis 
indeed agrees well with the experimental result (Fig. 2A vs. Fig. S3B). 
The increase in both triboelectric and receptor potential proceeds upon 
physical contact between the Al plate and the skin (d = 0) and it expe
riences an acceleration with negative d (d ≤ 0). This physical contact 
phase with d ≤ 0 represents the degree of deformation of the artificial 
skin (|d|), largely resembling the tissue deformation in the human skin. 
The pressure at d = − 0.250 mm is found to be ~50 kPa (Fig. S4), which 
is comparable to light touching and tapping by a human hand. Surface 
charge density of the object is obtainable from the receptor voltage at 
d = 0 as seen in Fig. S3B, demonstrating the capability of perceiving the 
object surface properties using our artificial SA-I TPNS. 

The receptor potential is then fed to the ring oscillator in the artificial 
peripheral neuron to initiate pulses at the drain terminal of the down
stream transistor right after the ring oscillator (Fig. 1B). The generated 
pulses are analogue to action potentials or a spike train fired at the SA-I 
peripheral neurons although there are subtle differences in, e.g. shape 
and frequency. For simplicity, we refer the pulses generated by the ring 
oscillator as action potential or spikes in this work. The action potential 
increases monotonously both in magnitude and oscillation frequency 
with decreasing d (Fig. 2B). In the approaching phase, the sensitivity 
defined by the slope of the frequency-distance relation is maximized at 
d ≈ 1.1 mm, representing an excellent early warning capability of our 
artificial skins. The frequency of the action potential of our artificial 
neuron changes nonlinearly with d, which essentially follows the 
dependence of the firing rate on skin displacement for the biological SA-I 
afferents [33,34]. 

The action potential propagates to the inverting amplifier circuit and 
generates the output referred to as the postsynaptic potential. This 
postsynaptic potential is seen in Fig. 2C akin faithfully to the action 
potential in both magnitude and frequency for their dependency on d. 
The high fidelity in signal propagation through the inverting amplifier 
circuit as in a synaptic structure is, hence, evident. The spike trains in 
response to four individual contact events are registered in Fig. 2D. 
During a static contact at a fixed d, both magnitude and frequency of the 
postsynaptic potential decrease gradually over time (Fig. 2E and 
Fig. S6). The time span for the postsynaptic potential to drop from its 
peak (at t = 0) to the normal low level, i.e. adaptive behaviour, is 
~3 min. It can be readily reduced to ~100 ms by appropriate circuit 
adjustment (Fig S7). Therefore, the featured slowly adapting behaviour 
of the biological SA-I afferent [4,20] has, for the first time, been 
reproduced using our TMRs. The slowly adapting response is beneficial 
to power saving in tactile perception, in particular, when a robotic hand 
or a prosthetic hand grasps and holds an object. 

The temporal feature of the postsynaptic potential in response to 
dynamic stimuli further reveals that the response during the approach
ing phase is dependent on the motion speed (more data in Fig. S8). When 
examining the motion speed-dependence of frequency (Fig. 2F), the 
frequency during the contact phase appears insensitive to the motion 
speed although the frequency at 0.25 mm/s is ~6% lower than those 
with the motion speed ≥ 0.5 mm/s. Therefore, the responsive feature of 
our artificial SA-I afferent nerve in the contact phase is, to great extent, 
analogue to the biological SA-I afferent nerve in that the frequency is 
mainly sensitive to the intensity of mechanical stimuli [20]. However, 
our artificial afferent nerve is exclusive in that its unique dependence of 
the response on the motion speed during the approaching phase can be 
exploited for discerning the dynamic feature of stimuli. 

Our artificial SA-I afferent nerves represent an event-driven system. 
The power consumption of a representative system consisting of a 
mechanoreceptor and an artificial peripheral neuron is below 15 nW at 
the inactive state, i.e. without mechanical stimuli, and 28.6 mW at the 
active state (Fig. S9). For an event-driven system with sparse activations 
as a biological TPNS, the power consumption at the inactive state is 
crucial. The inactive-state power consumption is nearly 600 times lower 
than that of a similar artificial nerve with a resistive mechanoreceptor 
and an organic ring oscillator (16). The ultralow power consumption at 
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its inactive state stems from the self-power characteristic of the trans
duction and the very low off-state current of the transistor. Generally, 
the total power consumption at an active state is the sum of the power 
consumed in the sensing operation of the transducer (Ps) and the power 
consumed in the downstream neuromorphic circuit (Pc). The latter, Pc, 
can be efficiently reduced to a very low level by careful circuit design 
implemented by means of the advanced semiconductor chip technology 
[35]. The former, Ps, can, thus, dominate the total power reduction and 
it increases with the number of sensors. The transducer employed here 
directly converts mechanical energy from external stimuli to electrical 
signal, i.e. self-powered, thereby ruling out the need of external power 
supply for transduction. Therefore, the design of our artificial SA-I TPNS 
is uniquely scalable for practical applications in neurorobotics and 
neuroprosthetics. 

The extraordinary perception capability of the human skin is in part 
associated with the distal axon of the tactile peripheral neurons that 
branches in the skin with a number of mechanoreceptors, thereby 
yielding complex receptive fields on the skin [22,34,36]. It has been 
found that the spatial layout of the receptive fields constitutes a 
mechanosensory encoding mechanism that allows for individual neu
rons to signal tactile information containing spatial details of touch 
objects [22,34]. In order to emulate such key functions, an artificial SA-I 

afferent nerve featuring four TMRs connected in parallel to one artificial 
peripheral neuron, i.e. a ring oscillator with a transistor, and then to one 
synapse structure, i.e. an inverting amplifier circuit (Fig. 3A) is con
structed. The four TMRs are arranged in a rectangle form of an artificial 
skin (Fig. 3B). 

The spike trains show the same characteristics when different 
numbers of the TMRs are recruited in a contact event (Fig. 3C). Upon 
Fourier transform of the spike trains, the frequency is found invariant 
when different combinations of the mechanoreceptors are stimulated 
(Fig. 3D). This spike firing property allows for movement recognition 
with the simple arrangement of the TMRs in a rectangle. When an object, 
an Al rod in this specific case, moves across the receptive field at 
different speeds and in different directions (Fig. 3B), the recorded 
sequential firing trains show similar features, but with different numbers 
of the spike trains in different moving directions (Fig. 3E and F). When 
the rod moves from the upper right to the lower left (orange arrow in 
Fig. 3B), two sets of TMRs (R2&R3 and R1&R4) are sequentially 
involved. When it moves along the horizontal direction (blue arrow), 
three sets of TMRs (R1, R2&R4 and R3) are sequentially recruited. The 
speed of the Al rod movement over the receptive field can be discerned 
by the temporal length or the interval of the individual spike trains fired 
when one TMR or a subset of TMRs is recruited during the object-skin 

Fig. 3. Characteristics of an artificial SA-I tactile afferent distally branched with four mechanoreceptors. A, Configuration of the artificial tactile afferent nerve 
comprising 4 receptors (labelled R1 to R4) connected in parallel to one artificial peripheral (first-order) neuron and then one synapse. B, Spatial layout of the 4 TMRs 
for direction recognition of a moving Al rod (silver vertical bar) in two different directions indicated by the arrows. C, Invariant postsynaptic potential of the tactile 
afferent when stimulating different TMRs and their combinations. D, Fourier transform of the signals in C also showing an invariant frequency upon stimulating 
differently combined mechanoreceptors. E-F, Varied number of spike trains, postsynaptic potential, when moving the rod in the two directions in B. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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interaction. 
Previous neurobiological studies indicate that a cuneate neuron re

ceives signals from an ensemble of cutaneous afferents (~300) [37]. A 
multiple-synaptic integration of tactile information from a cohort of 
peripheral neurons is indeed important for the rapid classification of 
tactile information at the level of the cuneate neuron by the 
temporal-to-spatial conversion in the somatosensory pathways [4,22, 
23]. Use of an inverting amplifier circuit as the synaptic structure is 
shown to perform the spatial summation of multiple-synaptic signals as 
evidenced in Fig. 4. Different from the configuration in Fig. 3A, three 
artificial peripheral neurons, each connected to one TMR, are linked to 
their respective synaptic structure of inverting amplifier circuit 
(Fig. 4A). The mechanoreceptor-object distance from an approaching Al 
plate to the three TMRs in the PDMS film is mostly different over time of 
the movement. Although the difference in distance is small, it is suffi
cient to generate distinct action potential signals from the three artificial 
peripheral neurons, denoted as A1, A2 and A3. The postsynaptic po
tentials, resulting from the transition of an individual action potential 
through a synapse of inverting amplifier circuit, are, then, detected (see 
Method in Supporting Information) and denoted as F(An) (n = 1, 2 and 
3). Here, F represents the operation of the synapse of inverting amplifier 
circuit. The final magnitude and frequency of F(An) are displayed in 

Fig. 4B and C, respectively. When the action potentials from the three 
TMRs are integrated at one synapse of inverting amplifier circuit in the 
system as illustrated in Fig. 4A, the result is the integration of A1, A2 and 
A3, i.e. F(A1+A2+A3) (Fig. 4B-IV). F(A1+A2+A3) is essentially equal 
to the sum of the individual postsynaptic potentials, F(A1)+F(A2)+F 
(A3) (Fig. 4B-V). Consistently, the frequency components of F 
(A1+A2+A3) in Fig. 4C-IV are identical to those of F(A1)+F(A2)+F(A3) 
in Fig. 4C-V. By merely examining the magnitude of the postsynaptic 
potential (Fig. 4D), it is challenging to distinguish the number of arti
ficial peripheral neurons evoked. In contrast, the postsynaptic potential 
of our artificial tactile afferent can faithfully deliver the frequency 
components in the tactile signal from the stimulated artificial peripheral 
neurons (Fig. 4E). The frequency information is an added dimension and 
it allows one to discern the number of the stimulated artificial peripheral 
neurons. This characteristic is analogue to the fire-rate coding exploited 
in biological nervous systems. However, it is unfeasible to rely on a 
single synapse to distinguish the spatial information of the artificial 
peripheral neurons evoked in response to a stimulus. Invoking a nervous 
system containing overlapped receptive fields and multiple synaptic 
structures can resolve the problem. 

In an anatomical somatosensory system, tactile information collected 
in the peripheral nervous system comprising the peripheral neurons, 

Fig. 4. Characteristics of a triple-synaptic integration. A, Configuration of the artificial tactile afferent comprising three artificial peripheral (first-order) neurons 
connected to a common synaptic structure for a hetero-synaptic integration. B, Postsynaptic potential for individual (I-III) and integrated (IV) synapses. C, Fourier 
transform of the signals in B. D, Peak voltage of the integrated postsynaptic potential equal to the sum of the peak voltages of the individual artificial first-order 
neurons. E, Preserved frequencies of the stimulated individual artificial first-order neurons when examining the integrated postsynaptic potential. 
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Fig. 5. Spatial recognition of a two-tier artificial SA-I TPNS in response to a mechanical stimulus. A, Schematic nervous system for neuromorphic signal classification 
comprising an input layer of 45 TMRs (R) distributed in the PDMS skin, the first convolution layer of 9 artificial first-order neurons (1A) and the second convolution 
layer containing 16 synaptic structures of the second-order neurons (2

kA (k = 0,1,2…15)). B, Spatial layout of the mechanoreceptors (I) being mapped to the artificial 
first-order neurons (II) and the synaptic structures (III). C, Spatial maps of the ensemble of postsynaptic potentials in magnitude (I) and frequency (II) showing that 
the frequency coding can provide a precise place code with an improved spatial resolution to the contact event (III). In C(III), the colours in the three blocks are 
different. The area of the stimulus is indicated in the dashed squares. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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also called the first-order neurons, is transmitted to the second- and then 
third-order neurons in the central nervous system. The anatomical 
arborization of neurons allows their distal dendrites and proximal axon 
terminals for complex synaptic connections to the lower and higher- 
order neurons (Fig. 1). The structure of divergence and convergence of 
the first-order neurons onto the second-order neurons allows the second- 
order neurons to encode a great amount of different spike patterns of the 
first-order neurons [4]. The structural features of the tactile afferent 
nervous system have motivated the design of a two-tier artificial TPNS 
that can perform fast tactile signal processing for extraction of geometric 
features (Fig. 5A). The structure of this hardware demonstrator is 
described in Supplementary Information. Briefly, it comprises three 
consecutively interconnected layers, i.e. 45 TMRs, 9 artificial first-order 
(peripheral) neurons and 16 synaptic structures of artificial 
second-order neurons (Fig. S8 and 9). Each artificial peripheral neuron is 
connected in parallel to five TMRs, defining a receptive field. With each 
colour representing a specific receptive field, Fig. 5B illustrates the 
distribution of the TMRs (I), the mapping of the TMRs to the artificial 
peripheral neurons (II) and subsequently to the synaptic structures (III). 
Each block having three mosaics of different colours and one blank in 
Fig. 5B-III represents one synaptic structure. It has previously been 
suggested by theoretical simulations that the functional overlap of 
different receptive fields is likely critical for an enhancement of spatial 
resolution [34,36]. In our design, the receptive field of each artificial 
peripheral neuron can overlap with four neighbouring receptive fields at 
its corners, as shown in Fig. 5B-I. 

To characterize the spatial recognition and the recognition resolu
tion of our artificial TPNS, the ensemble of postsynaptic potentials is 
studied for their collective and collaborative responses to a mechanical 
stimulus made by contacting the system with a small Al plate (Fig. 5A- 
left). This Al plate is 5 mm in size, which is half of the receptive field size 
and also equal to the minimal inter-receptor distance. When the Al plate 
is brought to physical contact with the artificial skin (d≤0) with the 
contact area marked by the dashed lines in Fig. 5A–C, all the TMRs that 
are in interaction with the plate are recruited for the generation of re
ceptor potential. The recruited TMRs evoke the downstream artificial 
first-order neurons dyed with blue, pink and purple for spike firing 
(Fig. 5A-middle). The inputs from the evoked artificial first-order neu
rons are integrated at the synaptic structures in a way similar to the 
biological somatosensory pathway [4,22]. The signal integration 
thereby results in distinct output patterns (maps) of the ensemble of 
postsynaptic potentials in peak magnitude (Fig. 5C-I) and frequency 
components (Fig. 5C-II). 

Although using frequency coding in an artificial afferent nerve with a 
single synapse can preserve the frequency components of the input from 
the multiple artificial first-order neurons, it cannot provide the spatial 
distribution of the recruited TMRs as analysed earlier (Fig. 4). This 
limitation can be readily mitigated through frequency coding by 
exploiting an intrinsic feature of our design of the artificial TPNS, i.e. 
two neighbouring artificial second-order neurons share two TMRs con
nected to their respective artificial first-order neurons (Fig. 5B). The 
achieved spatial distribution of the frequency components correspond
ing to the recruited TMRs in the ensemble of postsynaptic signals is 
shown in Fig. 5C-II. The function of this structural feature of our arti
ficial TPNS design may provide a clue about how a biological TPNS 
functions. Furthermore, it is evident that only one block that corre
sponds precisely to the contact area contains three distinct frequencies. 
This block can be readily selected by implementing a threshold opera
tion that one artificial second-order neuron fires spikes only when it 
receives signals simultaneously from all the three artificial first-order 
neurons it connects to (Fig. 5A-right). As a result, the geometric infor
mation about object-artificial skin interaction has a spatial resolution of 
2.5 mm. This value is 4.5 times smaller than the distance between the 
centres of two nearest neighbouring receptive fields (11.2 mm) and 2 
times smaller than the smallest inter-receptor distance (5 mm). It is 
worth noting that this threshold operation is equivalent to the 

coincidence detection that is one of the most fundamental computa
tional mechanisms of a brain, i.e. the central neurons preferentially 
respond when receiving synchronous inputs from many sources [4, 
38–41]. A recent study on biological tactile afferent suggests that a 
coincidence detector likely works very early in the distal peripheral 
nervous networks, at the level of first-order neurons [22]. The signal 
processing of our artificial TPNS is thus in consistency with this 
assumption made in the neurobiological study. The neural connectivity 
and the neuromorphic signal processing of our artificial TPNS can be 
mathematically modelled with a convolutional neural network (CNN) 
comprising an input layer and two convolutional layers, represented by 
a 9 × 9 matrix for R, a 3 × 3 matrix for 1A and a series of kA

2 values 
(k = 0,1,2…15) (Fig. S10 and the description in Supplementary Infor
mation). Through the two convolution layers, the tactile image from the 
mechanoreceptor array is successfully transmitted to a group of 16 
feature maps (i.e. place codes). These features become the input to the 
downstream artificial neurons in analogue to the third-order neurons 
ending at the somatosensory cortex to perform the higher-level classi
fication of the tactile information associated with the conscious 
perception of sensation. 

4. Conclusion 

In summary, we have presented an artificial TPNS with self-powered 
transducers that potentially advances the electronic skin technology. 
With the mechanoreceptors we have designed, the slowly adapting 
feature of the biological SA-I afferent has been well reproduced. This 
slowly adapting behaviours, in combination with the event-driven 
working manner and parallel information processing with spikes, 
leads to the scalability of our artificial TPNS, i.e., the number of re
ceptors and artificial neurons increase without causing an appreciable 
increase in the latency and power consumption. The artificial TPNS 
processes tactile signals which can be described using the CNN model. 
By combining the design of overlapped receptive fields, our artificial 
TPNS delivers high-fidelity tactile information with the resolvable 
dimension two times smaller than the minimal inter-receptor distance. 
Therefore the barrier that limits the spatial resolution of the existing 
electronic skin technologies in mapping tactile stimulation has been 
broken. This result has opened up a route for artificial skins towards the 
exceptional capability of human fingertips in discriminating fine tex
tures. Although simple hardware architecture with well-known circuit 
design to emulate the neural structure has been used, the results of 
tactile perception are profound. Following the conceptual approach for 
hardware design, remarkable advancements towards attaining the su
perior function of the natural tactile nervous system are expected pro
vided that the advanced semiconductor chip technology and circuit 
technology (e.g., application specific integrated circuits, ASICs) are 
exploited. 
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